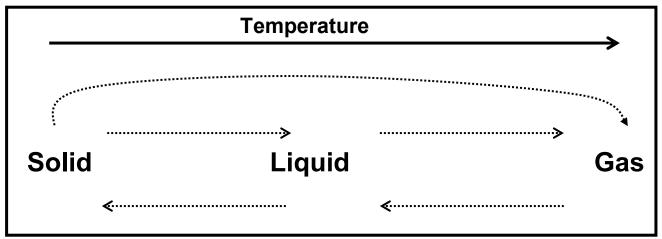
Risk Bases Response

- 1. The systematic process based upon facts, science and the circumstances of the incident by which responders analyze a problem involving a hazardous material/weapon of mass destruction (WMD), assess the hazards, and consequences, develop an incident action plan, and evaluate the effectiveness of the plan.
- 2. (NFPA 470,2022)

Systematic Approach of the Terminology

- Temperature of the Material
- State of the material
- Vapor Pressure
- Vapor Density
- Flash Point
- Flammable Range
- Reactivity/Incompatibilities
- Specific Gravity
- Solubility
- pH


NIOSH Guidebook

PHYSICAL & CHEMICAL PROPERTIES

Temperature of the Material

What can affect the temperature of the material?

 The various physical changes that a substance can undergo, temperature dependant, include the following:

State of the Material

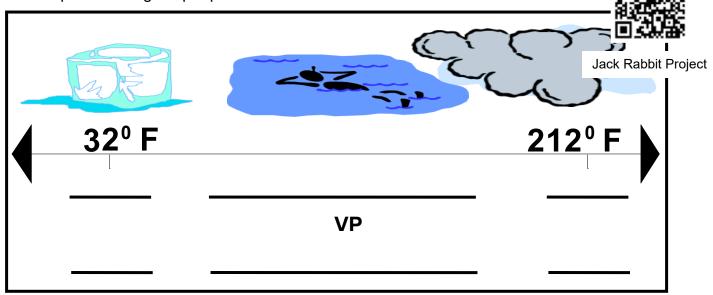
Solids

- Blocks
- Shavings
- Prills
- Powders
- Sublimation Direct passage of a substance from the solid state to the vapor state without appearing in the liquid state.

Liquids -

- Most common state of hazardous materials
- Remember All liquids want to be gases but due to their physical properties and their temperature remain in the liquid state.
- Liquids are concentrated gases

Gases -


- Gas releases are ALWAYS an emergency.
- Pressurized gas
- Liquefied gas

BOILING POINT

• Temperature at which the *vapor pressure* of a liquid is equal to or greater than the ambient air pressure. Reference materials refer to the boiling point at sea level.

VAPOR PRESSURE

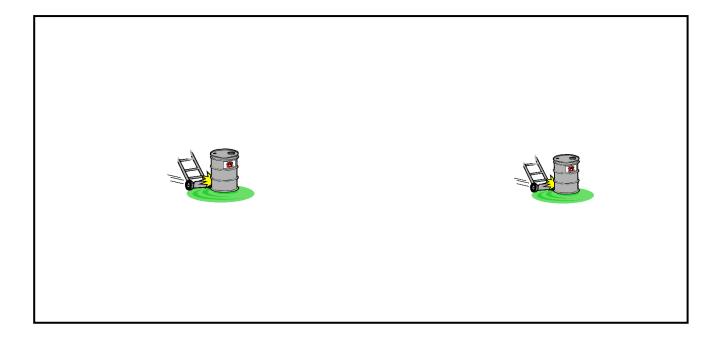
- Pressure created inside a closed container when the molecules escape from the liquid or solid phase into the *gaseous phase*.
- Vapor pressures for liquids are usually measured in mmHg.
- Vapor pressures for gases are usually measured in **atm** (atmospheres)
- Liquids with high vapor pressures are referred to as volatile.

VAPOR DENSITY

- Weight of a vapor in relation to air
- Air = 1
- Vapor density significantly <1 are gases 4H MEDIC ANNA

-	Hydrogen	0.07
-	Helium	0.14
-	Hydrogen Fluoride	0.69 - 1.9
-	Hydrogen Cyanide	0.93
-	Methane	0.55
-	Ethylene	0.97
-	Diborane	0.96
-	Illuminating Gas	0.96
-	Carbon Monoxide	0.96
-	Ammonia	0.59
-	Neon	0.70
-	Nitrogen	0.97
-	Acetylene	0.91

Materials that are found in the liquid state have a vapor density >1


FLASH POINT

- Minimum **temperature** of a **liquid** where sufficient vapors are produced to form an ignitable mixture. There must be an ignition source to have a fire.
- Fire Hazard No Fire Hazard
- 1st parameter of fire
- Affected by the same properties as boiling point

APPLICATION:

FLAMMABLE RANGE

- Concentration of vapor in air where combustion must occur
- 2nd parameter of fire
- LEL Lower Explosive Limit minimum concentration of vapor in air where combustion can occur. Less that the LEL is too lean to burn
- UEL Upper Explosive Limit maximum concentration in air where combustion can occur. Concentrations greater than the UEL are too rich to burn
- Wide flammable range materials are most dangerous

APPLICATION:

IGNITION TEMPERATURE

- Minimum temperature a substance must be heated for self-sustained combustion
- Rapid Oxidation
- Types of ignition temperatures
 - Pilot ignition external source such as a spark or flame
 - Autoignition heat from radiation or conduction

APPLICATION:

Reactive/Incompatibilities

- Incompatabilities
- Reactivity
- Specific Gravity
 - Weight of a material compared to the weight of water, Water = 1
 - Street Meaning
- Solubility
 - Is the ability (solute) to mix into a liquid, the (solvent), It measures the highest amount of substance mixed into a liquid solvent while they are at equal amounts.
 - Street Meaning

<u>рН</u>

- рН
- is based upon the dissociation of water molecules into protons or hydrogen and hydroxide ions
- Tactical Application
- ½ the problem
- <2 or >12.5

Concentration

- refers to the quantity of a solute dissolved in a solution
- Tactical Application
- Other ½ of the problem
- · Must be considered with pH

0 	7	14
	pH	pH
	burns	burns
	decon	decon

Richard Dufek

FireHouse Training & Consulting

rcdufek@gmail.com

317-432-8184